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Toward Causal Inference With Interference
Michael G. HUDGENS and M. Elizabeth HALLORAN

A fundamental assumption usually made in causal inference is that of no interference between individuals (or units); that is, the potential
outcomes of one individual are assumed to be unaffected by the treatment assignment of other individuals. However, in many settings, this
assumption obviously does not hold. For example, in the dependent happenings of infectious diseases, whether one person becomes infected
depends on who else in the population is vaccinated. In this article, we consider a population of groups of individuals where interference is
possible between individuals within the same group. We propose estimands for direct, indirect, total, and overall causal effects of treatment
strategies in this setting. Relations among the estimands are established; for example, the total causal effect is shown to equal the sum of
direct and indirect causal effects. Using an experimental design with a two-stage randomization procedure (first at the group level, then
at the individual level within groups), unbiased estimators of the proposed estimands are presented. Variances of the estimators are also
developed. The methodology is illustrated in two different settings where interference is likely: assessing causal effects of housing vouchers
and of vaccines.

KEY WORDS: Group-randomized trials; Potential outcomes; Stable unit treatment value assumption; SUTVA; Vaccine.

1. INTRODUCTION

1.1 Background and Outline

A fundamental assumption usually made in the potential out-
comes approach to causal inference is that of no interference be-
tween individuals (Cox 1958), a critical component of the stable
unit treatment value assumption (SUTVA) (Rubin 1980). Under
the no-interference assumption, the potential outcomes of any
individual are assumed to be unaffected by the treatment as-
signment of every other individual. However, in many settings,
this assumption obviously does not hold. A classical example is
given by the dependent happenings of infectious diseases (Ross
1916, p. 211), where whether one person becomes infected de-
pends on who else in the population is vaccinated. In economet-
rics, a household’s decision whether to move may be affected
by whether their neighbors receive a housing voucher to move
(Sobel 2006). In education, interventions given to certain stu-
dents may affect other students in the same class (Rubin 1990;
Rosenbaum 2007). Sobel (2006) and Rosenbaum (2007) gave
several other examples where interference is likely. In some set-
tings, interference is a nuisance while in other settings it creates
effects of interest. An example of the former includes agricul-
tural experiments, where fallow rows between treatment plots
can sometimes eliminate interference between plots. An exam-
ple of the latter includes vaccinating against infectious diseases,
where interference is an inherent result of the biology of trans-
mission and is intrinsically of interest.

The assumption of no interference between individuals is of-
ten made without critical examination. Models not requiring
this assumption have been considered in the context of plant
variety evaluation (Kempton 1997) and cross-over trials (Senn
1993; Bailey and Kunert 2006). However, these methods typi-
cally assume a specific interference structure that is local in ei-
ther space or time. Without making any such assumptions about
the nature of interference, Struchiner, Halloran, Robins, and
Spielman (1990) and Halloran and Struchiner (1991) conceptu-
ally defined several different types of causal effects of interven-
tions that are possible in the presence of interference, namely,
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direct, indirect, total, and overall effects. To estimate the latter
three effects, they noted one needs a population of groups as
in group-randomized studies (Murray 1998). Several vaccina-
tion studies have been conducted or analyzed with the intent to
estimate certain of these effects (Moulton et al. 2001; Longini,
Halloran, and Nizam 2002; Ali et al. 2005; King et al. 2006).

Halloran and Struchiner (1995) delineated many of the com-
plications of using potential outcomes to define causal esti-
mands for the different types of effects possible in the presence
of interference. They used Rubin’s (1978, 1990) suggestion for
a general notation in the presence of interference to define in-
dividual direct, indirect, total, and overall effects by letting the
potential outcomes for any individual depend on the vector of
treatment assignments to the other individuals in the population.
However, they found this approach impracticable because the
number of possible potential outcomes becomes unwieldy for
any reasonably sized population. More recently, Sobel (2006)
proposed causal estimands for assessing housing voucher ef-
fects defined by averaging causal effects over all possible treat-
ment assignments for a particular voucher allocation strategy
compared to a benchmark allocation wherein all households re-
ceive no voucher. Rosenbaum (2007) developed nonparametric
tests and confidence intervals for assessing treatment effect in
the presence of interference.

In this article, we consider a population of groups of individ-
uals where interference is possible between individuals within
the same group. We propose causal estimands for direct, indi-
rect, total, and overall causal effects of treatment assignment
strategies based on Sobel’s approach of averaging over all pos-
sible treatment assignments (Sec. 3). Relations among the esti-
mands are established and inference concerning the estimands
is considered (Sec. 4). Using an experimental design with a
two-stage randomization procedure (the first at the group level,
the second at the individual level within groups), unbiased es-
timators of the proposed estimands are presented. Estimating
the variance of the estimators is also considered. The method-
ology is illustrated in two different settings where interference
is likely: assessing causal effects of housing vouchers and of
vaccines (Sec. 5). Proofs are given in the Appendix. We begin
with an example to motivate the development of the rest of the
article.
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1.2 Motivating Example

In this section, we consider data from an individually ran-
domized, placebo-controlled trial of killed oral cholera vaccines
to illustrate the direct, indirect, total, and overall effects as de-
fined by Halloran and Struchiner (1991). Table 1 presents data
from a reanalysis of this trial where the interest was in determin-
ing whether the level of vaccine coverage in a residential area,
called a bari, was related to the incidence of cholera in individ-
ual vaccine recipients or placebo recipients residing in the bari
(Ali et al. 2005). The target population was divided into groups
by level of vaccine coverage. For illustration, we consider the
groups with more than 50% and less than 28% coverage, which
we denote as groups A and B.

The effects of vaccination can be estimated based on dif-
ferences in the incidence of cholera during the first year of
follow-up of the trial. The direct effects are estimated by com-
paring the incidence (risk per 1,000 population) between vac-
cinated individuals and unvaccinated individuals within each
group. For example, the estimated direct effect in group B is
7.01−2.66 = 4.35, suggesting vaccination results in 4.35 fewer
cases of cholera per 1,000 individuals per year. The estimated
direct effect in group A is 1.47−1.27 = .20, considerably lower
than in group B. The difference in the two estimates illustrates
one of the challenges in making comparisons directly within
groups when interference is present. If an analysis were limited
to group A only, the evidence would suggest that the vaccine
has little effect.

The indirect effects of vaccination are those effects due to the
level of coverage. They can be estimated by comparing the out-
comes in the unvaccinated in the two groups or the outcomes
in the vaccinated in the two groups. For instance, the estimated
indirect effect in the unvaccinated is 7.01 − 1.47 = 5.54. Note
this estimate is greater than the estimated direct effect in either
of the groups, highlighting the importance of looking beyond
direct effects in the presence of interference. Based on similar
analyses, Ali et al. concluded that the vaccines provide signifi-
cant indirect protection to nonvaccinated individuals.

Total and overall effects provide summary measures that
combine direct and indirect effects. The total effect of vacci-
nation is the effect of being vaccinated in the group with higher
coverage (A) compared to not being vaccinated in the group
with lower coverage (B). The estimated total effect (B − A) is
7.01−1.27 = 5.74. Note the total effect (B−A) estimate equals
the direct effect estimate in group A plus the indirect effect es-
timate in the unvaccinated (B − A). The overall effect is the

average effect of being in the group with higher coverage com-
pared to being in the group with lower coverage. The overall
effect can be estimated by the difference in incidence between
the two groups, that is, 35/8,479 − 25/18,623 = 2.79/1,000.

2. PRELIMINARIES

2.1 Potential Outcomes

Suppose there are N > 1 groups of individuals [or blocks
of units using Rosenbaum’s (2007) terminology]. For i =
1, . . . ,N , let ni denote the number of individuals in group i

and let Zi ≡ (Zi1, . . . ,Zini
) denote the treatments those ni in-

dividuals receive. We assume throughout that assignment of an
individual to a particular treatment is equivalent to receipt of
that treatment; that is, there is perfect compliance. Assume Zij

is a dichotomous random variable having values 0 or 1 such
that Zi can take on 2ni possible values. Let Zi(j) denote the
ni − 1 subvector of Zi with the j th entry deleted. The vector
Zi will be referred to as an intervention or treatment program,
to distinguish it from the individual treatment Zij . Let zi and
zij denote possible values of Zi and Zij . Define Rj to be the
set of vectors of possible treatment programs of length j for
j = 1,2, . . . ; for example, R2 ≡ {(0,0), (0,1), (1,0), (1,1)}.
Possible values zi of Zi are elements of Rni . For positive in-
teger n and k ∈ {0, . . . , n}, define Rn

k to be the subset of Rn

wherein exactly k individuals receive treatment 1; for example,∑ni

j=1 zij = k for all zi ∈ R
ni

k .
Denote the potential outcome of individual j in group i under

treatment zi as Yij (zi ). Following the usual approach to causal
inference (see, e.g., Rosenbaum 2007), we assume the Yij (zi )

potential responses are fixed because they do not depend on the
realized random assignment of treatments Zi , whereas the ob-
served responses Yij (Zi ) do depend on Zi and, thus, are random
variables. The notation Yij (zi ) allows for the possibility that the
potential outcome for individual j may depend on another in-
dividual’s treatment assignment in group i; that is, there may
be interference between individuals within a group. Implicit in
this notation is the assumption that the potential outcomes for
individuals in group i do not depend on treatment assignments
of individuals in group i′ for i′ �= i. In other words, we assume
no interference between individuals in different groups but al-
low for interference between individuals within the same group
(Halloran and Struchiner 1991, 1995). This will be a reasonable
assumption provided the groups are sufficiently separate (e.g.,
in space or time). Sobel (2006) called this a partial interference
assumption. In the literature of group-randomized studies, vio-
lation of no interference across groups is called contamination.

Table 1. Risk of cholera in recipients of killed oral cholera vaccines or placebo, by level of coverage of the bari during one year of follow-up,
based on data from Ali et al. (2005)

Level of
vaccine
coverage

Vaccine recipients Placebo recipients

Target Risk per 1,000 Risk per 1,000
population Total Cases population Total Cases population

>50% 22,394 12,541 16 1.27 6,082 9 1.47
41–50% 24,159 11,513 26 2.26 5,801 27 4.65
36–40% 24,583 10,772 17 1.58 5,503 26 4.72
28–35% 25,059 8,883 22 2.48 4,429 26 5.87
<28% 24,954 5,627 15 2.66 2,852 20 7.01
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2.2 Treatment Assignment Mechanisms

Let ψ and φ denote parameterizations that govern the distrib-
ution of Zi for i = 1, . . . ,N . For example, ψ might correspond
to randomly assigning half of individuals in a group to treat-
ment 1 and the other half to treatment 0, while φ might corre-
spond to assigning all individuals in a group to treatment 0. We
refer to ψ and φ as individual treatment assignment strategies.
Our goal is to assess the causal effects of assigning groups to ψ

compared to φ.
As is typical of causal inference articles, we use randomiza-

tion inference whereby the randomization distribution induced
by the experimental design forms the basis for statistical infer-
ence. For the experimental design, we consider a two-stage ran-
domization procedure. In the first stage, each of the N groups
is randomly assigned to either φ or ψ . In the second stage, in-
dividuals are randomly assigned treatment conditional on their
group’s assignment in the first stage. For example, in the first
stage, half of the N groups might be assigned to an alloca-
tion strategy φ and the other half ψ ; in the second stage, two-
thirds of the individuals within a group are randomly assigned
treatment 1 for groups assigned φ, while one-third of the indi-
viduals within a group are randomly assigned treatment 1 for
groups assigned ψ . Such a design has been referred to as split-
plot (Hayes, Alexander, Bennett, and Cousens 2000) or pseudo-
cluster (Borm, Melis, Teerenstra, and Peer 2005) randomiza-
tion and has been proposed for evaluation of intervention pro-
grams in the elderly (Melis et al. 2005) and vaccine efficacy
(see Sec. 5.2). This design can be employed to answer ques-
tions such as: How many infections will be averted by vacci-
nating two-thirds of the population compared to only vaccinat-
ing one-third of the population? What proportion of households
will move if two-thirds receive vouchers compared to only one-
third receiving vouchers?

Corresponding to the first stage of randomization, let S ≡
(S1, . . . , SN) denote the group assignments with Si = 1 if the
ith group is assigned to ψ and 0 otherwise. Let ν denote
the parameterization that governs the distribution of S and let
C ≡ ∑

i Si denote the number of groups assigned ψ . Define ν

to be a mixed (Sobel 2006) or permutation (Friedman, Furberg,
and DeMets 1998) group assignment strategy if 0 < C < N

and Prν(S = s) = C!(N − C)!/N ! if s ∈ RN
C , 0 otherwise. In

other words, under a mixed group assignment strategy, a fixed
number C of N groups are assigned ψ , with each of the

(
N
C

)

possible group assignments receiving equal probability. Simi-
larly, corresponding to the second stage of randomization, let
Ki ≡ ∑

j Zij and define φ and ψ to be mixed individual group
assignment strategies if Ki is fixed given Si , with 0 < Ki < ni

and each of the
(
ni

Ki

)
possible individual treatment assignments

receiving equal probability.

3. CAUSAL ESTIMANDS

3.1 Average Potential Outcomes

A fundamental problem in causal inference is that, in general,
it is not possible to observe more than one potential outcome
for an individual. Faced with this problem, causal estimands are
typically defined in terms of averages of potential outcomes that
are identifiable from observable random variables. Following

this approach, we begin by writing the potential outcomes for
individual j in group i under zij = z as

Yij

(
zi(j), zij = z

)
(1)

for z = 0,1. Because (1) depends on zi(j), define the individual
average potential outcome under treatment assignment z by

Y ij (z;ψ) ≡
∑

ω∈Rni−1

Yij

(
zi(j) = ω, zij = z

)

× Prψ
(
Zi(j) = ω|Zij = z

)
.

In other words, the individual average potential outcome is
the conditional expectation of Yij (Zi ) given Zij = z under as-
signment strategy ψ . Averaging over individuals, define the
group average potential outcome under treatment assignment
z as Y i(z;ψ) ≡ ∑ni

j=1 Y ij (z;ψ)/ni . Finally, averaging over
groups, define the population average potential outcome under
treatment assignment z as Y (z;ψ) ≡ ∑N

i=1 Y i(z;ψ)/N .
The average potential outcomes discussed previously are de-

fined as functions of both the group assignment ψ (or φ) and
the individual treatment assignment z. We can also define av-
erage potential outcomes solely as a function of ψ . For exam-
ple, define the marginal individual average potential outcome
by Y ij (ψ) ≡ ∑

z∈Rni Yij (z)Prψ(Zi = z), that is, the average po-
tential outcome for individual j in group i when group i is as-
signed ψ . Similarly, define the marginal group and population
average potential outcomes by Y i(ψ) ≡ ∑ni

j=1 Y ij (ψ)/ni and

Y (ψ) ≡ ∑N
i=1 Y i(ψ)/N .

In the following sections, causal estimands are defined in
terms of these various average potential outcomes.

3.2 Direct Causal Effects

Halloran and Struchiner (1991) defined the direct effect of
a treatment on an individual as the difference between the po-
tential outcome for that individual given treatment compared
to the potential outcome for that individual without treatment,
all other things being equal. Formally, following Halloran and
Struchiner (1995), we define the individual direct causal ef-
fect of treatment 0 compared to treatment 1 for individual j

in group i by

CED
ij

(
zi(j)

) ≡ Yij

(
zi(j), zij = 0

) − Yij

(
zi(j), zij = 1

)
. (2)

Next, define the individual average direct causal effect for in-
dividual j in group i by

CED
ij (ψ) ≡ Y ij (0;ψ) − Y ij (1;ψ), (3)

that is, the difference in individual average potential outcomes
when zij = 0 and when zij = 1 under ψ . Using Rubin’s (2005)
terminology, (3) is a marginal causal effect in that a comparison
is being made between expected values of the marginal distrib-
utions of Yij (Zi(j),Zij = 0) and of Yij (Zi(j),Zij = 1). Finally,
define the group average direct causal effect by CED

i (ψ) ≡
Y i(0;ψ) − Y i(1;ψ) = ∑ni

j=1 CED
ij (ψ)/ni and the popula-

tion average direct causal effect by CED(ψ) ≡ Y (0;ψ) −
Y (1;ψ) = ∑N

i=1 CED
i (ψ)/N .
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3.3 Indirect Causal Effects

In contrast to direct effects, an indirect effect describes the
effect on an individual of the treatment received by others in
the group. In particular, Halloran and Struchiner (1991) defined
the indirect effect of a treatment on an individual as the differ-
ence between the potential outcomes for that individual without
treatment when the group (i) receives an intervention program
and (ii) receives the benchmark program of no intervention.
Similar to Halloran and Struchiner (1995), we define the indi-
vidual indirect causal effect of treatment program zi compared
with z′

i on individual j in group i by

CEI
ij

(
zi(j), z′

i(j)

) ≡ Yi

(
zi(j), zij = 0

) − Yi

(
z′
i(j), z

′
ij = 0

)
, (4)

where z′
i is another ni -dimensional vector of individual treat-

ment assignments. (Note z′
i does not denote the transpose of zi .)

Remark. Definition (4) does not restrict either zi or z′
i to be

the benchmark program of no intervention; that is, individual
indirect causal effects may exist between two different interven-
tion programs. The same is true for the definitions of individual
total and overall causal effects.

Remark. The individual indirect causal effect could be de-
fined analogously for individuals with zij = z′

ij = 1; that is,
individuals under either treatment may experience indirect ef-
fects. This yields two individual indirect causal effects, which
need not be equal. For simplicity, only indirect effects based
on (4) are considered in the rest of this article.

Similar to direct effects, define the individual average in-
direct causal effect by CEI

ij (φ,ψ) ≡ Y ij (0;φ) − Y ij (0;ψ).

Clearly, if ψ = φ, then CEI
ij (φ,ψ) = 0; that is, there are

no individual average indirect causal effects. Finally, define

the group average indirect causal effect as CE
I

i (φ,ψ) ≡
Y i(0;φ) − Y i(0;ψ) = ∑ni

j=1 CEI
ij (φ,ψ)/ni and the popula-

tion average indirect causal effect as CEI (φ,ψ) ≡ Y(0;φ) −
Y(0;ψ) = ∑N

i=1 CEI
i (φ,ψ)/N .

3.4 Total Causal Effects

Total effects describe both the direct and the indirect effects
of a particular treatment assignment on an individual. Halloran
and Struchiner (1991) defined the total effect of a treatment on
an individual as the difference between the potential outcomes
for that individual (i) with treatment when the group receives an
intervention program and (ii) without treatment when the group
receives no intervention. Following Halloran and Struchiner
(1995), we define the individual total causal effects for indi-
vidual j in group i as

CET
ij

(
zi(j), z′

i(j)

) ≡ Yij

(
zi(j), zij = 0

) − Yij

(
z′
i(j), z

′
ij = 1

)
.

(5)

Define the individual average total causal effect by CET
ij (φ,

ψ) ≡ Y ij (0;φ) − Y ij (1;ψ), the group average total causal
effect by CET

i (φ,ψ) ≡ Y i(0;φ) − Y i(1;ψ) = ∑ni

j=1 CET
ij (φ,

ψ)/ni , and the population average total causal effect by
CET (φ,ψ) ≡ Y (0;φ) − Y (1;ψ) = ∑N

i=1 CET
i (φ,ψ)/N .

Remark. It follows from (2), (4), and (5) that the individ-
ual total causal effect is the sum of individual direct and in-
direct causal effects, that is, CET

ij (zi(j), z′
i(j)) = CED

ij (z′
i(j)) +

CEI
ij (zi(j), z′

i(j)
). Likewise, the total causal effects can be de-

composed as the sum of direct and indirect causal effects at
the individual average, group average, and population average
levels, for example, CET (φ,ψ) = CED(ψ) + CEI (φ,ψ). This
result formalizes, using a causal framework, models from the
vaccine and plant variety evaluation literature, which assume
the total effect is the sum of direct and indirect effects (Hallo-
ran and Struchiner 1991, 1995; Kempton 1997; Moulton et al.
2006).

Remark. A few other characteristics of the algebra of causal
effects bear mentioning. First, total causal effects are not
commutative; for example, CET (φ,ψ) will not necessarily
equal CET (ψ,φ) for φ �= ψ . However, indirect effects have
the property CEI (ψ,φ) = −CEI (φ,ψ), implying CED(ψ) +
CED(φ) = CET (φ,ψ) + CET (ψ,φ). Thus, the total causal
effects, while not necessarily equal, are constrained in sum
to equal the sum of the direct effects. Also note that if
CEI (ψ,φ) = CEI (φ,ψ) = 0, then CET (φ,ψ) = CET (ψ,φ)

if and only if CED(φ) = CED(ψ); that is, in the absence of
indirect effects, the total effects are commutative if and only if
the direct effects are equal.

3.5 Overall Causal Effect

Halloran and Struchiner (1991) defined the overall causal ef-
fect to be the average effect of an intervention program rela-
tive to no intervention. We define the individual overall causal
effect of treatment zi compared to treatment z′

i for individual
j in group i by CEO

ij (zi , z′
i ) ≡ Yij (zi ) − Yij (z′

i ). Similarly,
for the comparison of φ to ψ , define the individual average
overall causal effect by CEO

ij (φ,ψ) ≡ Y ij (φ) − Y ij (ψ), the

group average overall causal effect by CEO
i (φ,ψ) ≡ Y i(φ) −

Y i(ψ), and the population average overall causal effect by
CEO(φ,ψ) ≡ Y (φ) − Y (ψ).

3.6 No Interference

The estimands defined previously simplify under the assump-
tion of no interference between individuals within a group, that
is, under the assumption Yij (zi ) = Yij (z′

i ) for any two treat-
ment programs zi = (zi1, . . . , zini

) and z′
i = (z′

i1, . . . , z
′
ini

) such
that zij = z′

ij (Rubin 1980; Angrist, Imbens, and Rubin 1996).
Assuming no interference, the potential outcomes for individ-
ual j in group i can be written simply as Yij (0) and Yij (1). In
turn, the individual direct causal effect equals Yij (0) − Yij (1).
The corresponding group average direct causal effect becomes∑ni

j=1{Yij (0) − Yij (1)}/ni , that is, the usual average causal ef-
fect (ACE) estimand. By (4), the individual indirect causal ef-
fect equals 0 for all individuals assuming no-interference. Simi-
larly, by (5), the individual total causal effect equals the individ-
ual direct causal effect. Likewise, at the group and population
average levels, under the no-interference assumption the indi-
rect causal effect is 0 and the direct causal effect equals the
total causal effect. Assuming no interference also implies the
direct, indirect, and total effects do not depend on the treatment
assignment strategies φ and ψ , whereas in the presence of in-
terference within a group, they do in general.
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4. INFERENCE

In this section, we consider drawing inference about the esti-
mands defined previously. Throughout this section, we assume:

Assumption 1. ν, φ, and ψ are mixed assignment strategies.

In Section 4.1, we present estimators for the estimands de-
fined previously and show they are unbiased under Assump-
tion 1. In Section 4.2, we consider the variances of these esti-
mators.

4.1 Estimators

Theorem 1. Suppose Si = 1 and let

Ŷi (z;ψ) ≡
∑ni

j=1 Yij (Zi )I [Zij = z]
∑ni

j=1 I [Zij = z] for z = 0,1; (6)

that is, Ŷi (z;ψ) is the average of observed outcomes for indi-
viduals in group i receiving treatment z under treatment pro-
gram Zi . Under Assumption 1, E{Ŷi (z;ψ)|Si = 1} = Y i(z;ψ)

for z = 0,1.

Corollary. Under Assumption 1, ĈED
i (ψ) ≡ Ŷi (0;ψ) −

Ŷi (1;ψ) is a conditionally unbiased estimator of CED
i (ψ) given

Si = 1.

Remark. Unbiased estimators of the group average indirect,
total, and overall causal effects do not exist without further
assumptions because the same group is not observed under φ

and ψ .

Theorem 2. For z = 0,1, let Ŷ (z;ψ) ≡ ∑N
i=1 Ŷi (z;ψ) ×

I [Si = 1]/∑N
i=1 I [Si = 1]. Under Assumption 1, E{Ŷ (z;ψ)} =

Y (z;ψ) for z = 0,1.

Corollary. Under Assumption 1, unbiased estimators for the
population average direct, indirect, and total causal effects
are given by ĈED(ψ) ≡ Ŷ (0;ψ) − Ŷ (1;ψ), ĈEI (φ,ψ) ≡
Ŷ (0;φ) − Ŷ (0;ψ), and ĈET (φ,ψ) ≡ Ŷ (0;φ) − Ŷ (1;ψ),
where Ŷ (z;φ) is defined analogously to Ŷ (z;ψ) for z = 0,1.

Theorem 3. Let Ŷi (ψ) ≡ ∑ni

j=1 Yij (Zi )/ni and Ŷ (ψ) ≡
∑N

i=1 Ŷi (ψ)I [Si = 1]/ ∑N
i=1 I [Si = 1]. Under Assumption 1,

E{Ŷi (ψ)|Si = 1} = Y i(ψ) and E{Ŷ (ψ)} = Y (ψ).

Corollary. Under Assumption 1, an unbiased estimator of
CEO(φ,ψ) is given by ĈEO(φ,ψ) ≡ Ŷ (φ) − Ŷ (ψ), where
Ŷ (φ) is defined analogously to Ŷ (ψ).

4.2 Variance Estimators

In general, unbiased estimators of the variances of the
estimators discussed previously do not exist without mak-
ing further assumptions. For example, consider estimating
Var(Ŷi(z;ψ)|Si = 1) under Assumption 1. The estimator
Ŷi (1;ψ) is based on sampling from the set of potential out-
comes {Yij (zi ) : zi ∈ R

ni

Ki
, zij = 1} for some fixed value of Ki .

This set can be partitioned into
(
ni

Ki

)
clusters of size Ki , where

each cluster corresponds to a particular zi ∈ R
ni

Ki
. Moreover,

given Si = 1 from the first stage of randomization, the sec-
ond randomization stage entails selecting exactly one of these
clusters according to Zi . Thus, Ŷi (1;ψ) can be viewed as the

sample mean from a single systematic sample. It is known that,
in general, unbiased estimators of the variance of the sample
mean from a single systematic sample do not exist without
making further assumptions about the underlying population
(Som 1973, sec. 4.4; Thompson 1992, chap. 12.4).

Therefore, to make progress in deriving variance estimators,
in Section 4.2.1 an additional assumption is introduced about
the structure of interference (stratified interference), which may
be plausible in a broad range of settings. In Section 4.2.2, vari-
ance estimators of the direct, indirect, total, and overall causal
effect estimators are proposed. Under the additional assumption
of stratified interference, these variance estimators are shown to
be unbiased if the causal effects are additive and positively bi-
ased otherwise.

4.2.1 Stratified Interference. Suppose that Rni , that is, the
set of possible treatment programs for group i, can be parti-
tioned into strata such that within strata there is no interference.
In particular, we assume:

Assumption 2 (Stratified interference). For k = 1, . . . , ni −
1, Yij (zi ) = Yij (z′

i ) for all zi , z′
i ∈ R

ni

k such that zij = z′
ij .

To illustrate the meaning of Assumption 2, consider a study
of the effects of an intervention on children in a school. The
stratified interference assumption states that the outcome for a
child receiving the intervention will be the same when k − 1
schoolmates also receive the intervention, regardless of which
particular k − 1 schoolmates receive the intervention. This as-
sumption can be viewed as an intermediate assumption between
(i) assuming no interference within a group and (ii) making no
assumptions about the nature of interference within a group.
Moreover, because there are ni possible values of Ki given
zij = z, it follows that Yij (zi(j), zij = z) can take on ni val-
ues. Thus, for a given zij = z, an individual has ni potential
outcomes under Assumption 2 compared to only one potential
outcome under (i) and 2ni−1 potential outcomes under (ii).

To illustrate the utility of Assumption 2, again consider es-
timating Var(Ŷi(1;ψ)|Si = 1). Suppose, by way of contradic-
tion, there exists an unbiased estimator Var(Ŷi(1;ψ)|Si = 1) in
general, that is, under Assumption 1 only. Denote this estimator
by g(Oi1(Zi )), where Oi1(Zi ) ≡ {Yij (Zi ) :Zij = 1} is the set
of observed outcomes for individuals in group i assigned treat-
ment Zij = 1 and g is some real-valued function of Oi1(Zi ). By
our supposition, E{g(Oi1(Zi ))|Si = 1} = Var(Ŷi(1;ψ)|Si = 1)

under Assumption 1. Consider the following two different sce-
narios where ni = 3 and Ki = 2 given Si = 1.

First, suppose Yij (zi ) = κ for j = 1,2,3 and zi ∈ R3
2 =

{(011), (110), (101)}, where κ is some constant. In other
words, the potential outcomes in group i are constant for all
individuals and all treatment programs given Si = 1. Then
Var(Ŷi(1;ψ)|Si = 1) = 0, implying g({κ, κ}) = 0 for any con-
stant κ .

Second, suppose Yij (zi ) = f (zi ) for j = 1,2,3 and zi ∈ R3
2 ,

where f is some real-valued function of zi . In other words,
for any treatment program zi ∈ R3

2 , all individuals in group i

have the same response. Suppose also that f (011) �= f (110) �=
f (101). Now Ŷi (1;ψ) = f (Zi ), implying Var(Ŷi(1;ψ)|Si =
1) equals the sample variance of the set {f (zi ) : zi ∈ R3

2}.
Thus, Var(Ŷi(1;ψ)|Si = 1) > 0. However, because Oi1(Zi ) =
{f (Zi ), f (Zi )} in this scenario, it follows that E{g(Oi1(Zi ))|
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Si = 1} = 0. Thus, g is a biased estimator of Var(Ŷi(1;ψ)|Si =
1), a contradiction.

Intuitively, an unbiased estimator of Var(Ŷi(1;ψ)|Si = 1)

does not exist in general because the observed data provide
no way to distinguish between these two scenarios; under ei-
ther scenario, the observed outcomes are all equal, that is,
Yi1(Zi ) = Yi2(Zi ) = Yi3(Zi ). However, with the addition of As-
sumption 2, one can rule out the possibility of the second sce-
nario. Namely, under Assumption 2, Yi1(110) = Yi1(101) and
Yi2(110) = Yi2(011), implying f (011) = f (110) = f (101).

More generally, unbiased variance estimators do not exist
without further assumptions (such as stratified interference) be-
cause observing Yij (zi ) provides no information about Yij (ωi )

for ωi �= zi . Under Assumption 2, each individual now has only
two potential outcomes, one for zij = 0 and one for zij = 1,
within a particular stratum R

ni

k . Therefore, given Si , the ob-
served data under one treatment program will provide informa-
tion about the potential outcomes under other treatment pro-
grams. For example, suppose ψ is a mixed strategy such that
Ki is fixed. Then, under Assumption 2, the outcomes for indi-
vidual j are constant for all zi ∈ R

ni

Ki
such that zij = 1. Denote

this value by Yij (1;ψ), that is, Yij (1;ψ) ≡ Yij (ω, zij = 1) for

any ω ∈ R
ni−1
Ki−1. Define Yij (0;ψ) similarly.

4.2.2 Variance Estimators Assuming Stratified Interference.

Theorem 4. Let

V̂ar(Ŷi(1;ψ)|Si = 1) ≡
(

1 − Ki

ni

)
σ̂ 2

i1(ψ)

Ki

,

where σ̂ 2
i1(ψ) ≡ ∑ni

j=1{Yij (1;ψ) − Ŷi (1;ψ)}2Zij /(Ki − 1) is
the within-group sample variance, and

V̂ar(Ŷ (1;ψ))

≡
(

1 − C

N

)
σ̂ 2

g1(ψ)

C
+ 1

CN

N∑

i=1

(

1 − Ki

ni

)
σ̂ 2

i1(ψ)

Ki

Si,

where σ̂ 2
g1(ψ) ≡ ∑N

i=1{Ŷi (1;ψ) − Ŷ (1;ψ)}2Si/(C − 1). De-

fine V̂ar(Ŷi (0;ψ)|Si = 1), σ̂ 2
i0(ψ), V̂ar(Ŷ (0;ψ)), and σ̂ 2

g0(ψ)

analogously. Under Assumptions 1 and 2,

E
{
V̂ar(Ŷi(z;ψ)|Si = 1)|Si = 1

} = Var(Ŷi (z;ψ)|Si = 1) (7)

and E{V̂ar(Ŷ (z;ψ))} = Var(Ŷ (z;ψ)) for z = 0,1.

Theorem 5. Let

V̂ar(ĈED
i (ψ)|Si = 1) ≡ σ̂ 2

i1(ψ)

Ki

+ σ̂ 2
i0(ψ)

ni − Ki

. (8)

Under Assumptions 1 and 2,

E
{
V̂ar(ĈED

i (ψ)|Si = 1)|Si = 1
}

= Var(ĈED
i (ψ)|Si = 1) + σ 2

i(0−1)(ψ)/ni,

where σ 2
i(0−1)(ψ) ≡ ∑ni

j=1[{Yij (0;ψ) − Yij (1;ψ)} − {Y i(0;
ψ) − Y i(1;ψ)}]2/(ni − 1) is the variance of the ni differences
Yij (0;ψ) − Yij (1;ψ).

Corollary. Under Assumptions 1 and 2,

E
{
V̂ar(ĈED

i (ψ)|Si = 1)|Si = 1
} ≥ Var(ĈED

i (ψ)|Si = 1),

with equality holding if and only if

Yij (0;ψ) = Yij (1;ψ) + ηDi (9)

for fixed constant ηDi and j = 1, . . . , ni .

Remark. The corollary to Theorem 5 says (8) is a condition-
ally unbiased estimator of Var(ĈED

i (ψ)|Si = 1) if and only if
the individual direct effect is additive. If (9) does not hold, (8)
will be a positively biased estimator of Var(ĈED

i (ψ)|Si = 1).
This could occur, for instance, if the potential outcomes are bi-
nary, taking on values 0 and 1 only. In this case, (9) will only be
true if either (i) ηDi

= 0 or (ii) |ηDi
| = 1, with (ii) correspond-

ing to the scenario that either (Yij (0;ψ),Yij (1;ψ)) = (0,1) for
all j or (Yij (0;ψ),Yij (1;ψ)) = (1,0) for all j .

Theorem 6. Let

V̂ar(ĈED(ψ)) ≡
(

1 − C

N

)
σ̂ 2

D(ψ)

C

+ 1

CN

N∑

i=1

V̂ar(ĈED
i (ψ)|Si = 1)Si, (10)

where σ̂ 2
D(ψ) ≡ ∑N

i=1{ĈE
D
i (ψ) − ĈED(ψ)}2Si/(C − 1). Un-

der Assumptions 1 and 2,

E
{
V̂ar(ĈED(ψ))

} = Var(ĈED(ψ)) + 1

N2

N∑

i=1

σ 2
i(0−1)(ψ)/ni .

Corollary. Under Assumptions 1 and 2, E{V̂ar(ĈED(ψ))} ≥
Var(ĈED(ψ)) with equality holding if and only if (9) holds for
all i = 1, . . . ,N .

Remark. The corollary to Theorem 6 is similar to the corol-
lary to Theorem 5 in that (10) is an unbiased estimator of
Var(ĈED(ψ)) if and only if the individual direct effects are
additive. If direct additivity does not hold for all individuals,
(10) will be positively biased. Analogous results for the group
average indirect, total, and overall effects follow from Theo-
rems 7–9.

Theorem 7. Let V̂ar(ĈEI (φ,ψ)) ≡ σ̂ 2
g0(φ)/(N − C) +

σ̂ 2
g0(ψ)/C. Under Assumptions 1 and 2,

E
{
V̂ar(ĈEI (φ,ψ))

} = Var(ĈEI (φ,ψ)) + σ 2
g(0−0)(φ,ψ)/N,

where σ 2
g(0−0)(φ,ψ) ≡ ∑N

i=1[{Y i(0;φ) − Y i(0;ψ)} − {Y(0;
φ) − Y (0;ψ)}]2/(N − 1) is the variance of the N differences
Y i(0;φ) − Y i(0;ψ).

Corollary. Under Assumptions 1 and 2, E{V̂ar(ĈEI (φ,

ψ))} ≥ Var(ĈEI (φ,ψ)) with equality holding if and only
if Y i(0;φ) = Y i(0;ψ) + ηI for fixed constant ηI and i =
1, . . . ,N .

Theorem 8. Let V̂ar(ĈET (φ,ψ)) ≡ σ̂ 2
g0(φ)/(N − C) +

σ̂ 2
g1(ψ)/C. Under Assumptions 1 and 2,

E
{
V̂ar(ĈET (φ,ψ))

} = Var(ĈET (φ,ψ)) + σ 2
g(0−1)(φ,ψ)/N,
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where σ 2
g(0−1)(φ,ψ) ≡ ∑N

i=1[{Y i(0;φ) − Y i(1;ψ)} − {Y (0;
φ) − Y (1;ψ)}]2/(N − 1).

Corollary. Under Assumptions 1 and 2, E{V̂ar(ĈET (φ,

ψ))} ≥ Var(ĈET (φ,ψ)) with equality holding if and only
if Y i(0;φ) = Y i(1;ψ) + ηT for fixed constant ηT and i =
1, . . . ,N .

Theorem 9. Let V̂ar(ĈEO(φ,ψ)) ≡ σ̂ 2
M(φ)/(N − C) +

σ̂ 2
M(ψ)/C, where σ̂ 2

M(ψ) ≡ ∑N
i=1{Ŷi (ψ) − Ŷ (ψ)}2Si/(C − 1)

and σ̂ 2
M(φ) is defined analogously. Under Assumptions 1 and 2,

E
{
V̂ar(ĈEO(φ,ψ))

} = Var(ĈEO(φ,ψ)) + σ 2
M(φ,ψ)/N,

where σ 2
M(φ,ψ) ≡ ∑N

i=1[{Y i(φ) − Y i(ψ)} − {Y(φ) −
Y (ψ)}]2/(N − 1).

Corollary. Under Assumptions 1 and 2, E{V̂ar(ĈEO(φ,

ψ))} ≥ Var(ĈEO(φ,ψ)) with equality holding if and only if
Y i(φ) = Y i(ψ) + ηO for fixed constant ηO and i = 1, . . . ,N .

5. EXAMPLES

5.1 Housing Vouchers

Motivated by randomized studies designed to assess the ef-
fect of vouchers on housing mobility, Sobel (2006) proposed
causal estimands and estimators when interference between
units is present. At the first level, Sobel considered the effect of
housing vouchers on the lease-up rate, that is, whether a house-
hold moves. At the second level, he considered voucher effects
on other outcomes such as parents’ perceptions of safety, wel-
fare receipt, and child health. In this section, some of these es-
timands and estimators are shown to be special cases of those
defined in Sections 3 and 4.1. To begin, we demonstrate that
Sobel’s causal estimand and estimator of the voucher effect on
the lease-up rate are examples of the group average total causal
effect estimand and estimator. Because Sobel considered just
one group, we drop the subscript i for group in the rest of this
section.

Consider a study where n households within a neighborhood
are randomized to receive a housing voucher. In our terminol-
ogy, households correspond to individuals and the neighbor-
hood corresponds to a single group. Let Zj = 1 if the j th house-
hold receives a voucher, Zj = 0 otherwise for j = 1, . . . , n.
Let Yj (z) = 1 if the j th household moves using a voucher,
Yj (z) = 0 otherwise. Because moving using a voucher is clearly
not possible without a voucher, it follows immediately from the
definition of Yj (z) that

Yj

(
z(j), zj = 0

) = 0 for j = 1, . . . , n. (11)

Suppose Prφ(Z = 0) = 1; that is, φ corresponds to the bench-
mark allocation strategy where no household receives a voucher.
Then (11) implies

CET (φ,ψ) = −1

n

n∑

j=1

∑

z∈Rn−1

Yj

(
Z(j) = z,Zj = 1

)

× Prφ
(
Z(j) = z|Zj = 1

)

for any other household assignment strategy ψ . In particular,
suppose ψ corresponds to the mixed assignment strategy, where
exactly k of n households receive a voucher. Then

CET (φ,ψ)

= − (k − 1)!(n − k)!
n!

∑

z∈Rn−1
k−1

n∑

j=1

Yj

(
Z(j) = z,Zj = 1

)

= −k!(n − k)!
n!

∑

z∈Rn−1
k−1

1∑

ζ=0

1

k

n∑

j=1

Yj

(
Z(j) = z,Zj = ζ

)
ζ

= −k!(n − k)!
n!

∑

z∈Rn
k

1

k

n∑

j=1

Yj (Z = z)zj ,

which is equivalent (up to a minus sign) to equation (2) of Sobel
in the setting where there are two levels of treatment. Sobel ac-
tually considered the more general situation of three treatment
levels, which is not considered here. Sobel’s corresponding es-
timator, the observed lease-up rate among voucher recipients, is
equivalent to Ŷ (1;ψ) as given by (6). Under exclusion restric-
tion (11), ĈET (φ,ψ) = −Ŷ (1;ψ).

Although interference is possible among those receiving
housing vouchers, the exclusion restriction (11) precludes
interference when a household does not receive a voucher.
Thus, the indirect effect of housing vouchers on mobility is 0,
CEI (φ,ψ) = 0, and the total effects equal the direct effects. If
households could move without the aid of a voucher, an analy-
sis based on (11) could potentially overestimate the magnitude
of the total effect of vouchers. By instead defining Yj (z) = 1 if
the j th household moves and 0 otherwise, a voucher allocation
strategy may have indirect effects in those not receiving vouch-
ers as well as direct and total causal effects. For example, this
would allow for the possibility that if several neighbors move
because they receive vouchers, household j might also move
even though they did not obtain a voucher. Estimating such in-
direct causal effects of voucher distribution within a neighbor-
hood on those households that do not receive a voucher would
likely be of interest to policy makers. Of course, in this case,
observation of potential outcomes under the benchmark allo-
cation program Z = 0 would also be necessary to estimate the
indirect and total effects.

Sobel’s estimand of the effects of vouchers on outcomes such
as welfare receipt can be viewed as an example of the group av-
erage overall effect estimand. For instance, assume all house-
holds that receive a voucher subsequently move and φ is the
benchmark allocation strategy. Then taking the expected value
of Sobel’s “average effect” [his eq. (3)] over the distribution of
possible intervention programs under ψ yields the group av-
erage overall effect CEO(φ,ψ). Sobel noted that the average
overall effect is a weighted average of the indirect effects on
those not receiving a voucher, which he called spillover ef-
fects, and the effects in those receiving a voucher. More pre-
cisely, for φ the benchmark allocation strategy, the overall ef-
fect equals the following weighted sum of the indirect and to-
tal effects: CEO(φ,ψ) = Prψ(Zj = 0)CEI (φ,ψ) + Prψ(Zj =
1)CET (φ,ψ).
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Because the design of the housing voucher study does not
include randomizing some neighborhoods to the benchmark al-
location, outcomes such as welfare receipt and parents’ percep-
tion of safety are not observed under this allocation. Thus, with-
out further assumptions akin to (11), voucher effects on these
outcomes are not identifiable from the data. Alternatively, these
effects are identifiable by considering a population of neigh-
borhoods and a two-stage randomization design. For example,
neighborhoods within a city or set of cities could be identified
that were sufficiently separated geographically to ensure that
the assumption of no interference between neighborhoods is
plausible. Then, in the first stage of randomization, some neigh-
borhoods could be randomly assigned the benchmark alloca-
tion and other neighborhoods to an allocation strategy where in
the second stage, a specified proportion of randomly selected
households would receive a voucher. Such a design would per-
mit estimation of the direct, indirect, total, and overall effects of
housing vouchers on the outcomes described previously with-
out making exclusion restrictions such as (11). Estimation of
the variances of the causal effect estimators would also be pos-
sible with this design under the additional assumption of strati-
fied interference.

5.2 Vaccines

Direct application of the proposed methods to the data given
in Table 1 is not appropriate because baris were not randomly
assigned to particular levels of vaccine coverage in the ac-
tual trial. Therefore, for illustrative purposes, we consider a
hypothetical two-stage randomized placebo-controlled trial of
cholera vaccines in a setting similar to that of Ali et al. (2005).
Suppose in the first stage of this hypothetical trial that five geo-
graphically separate groups were randomized using a mixed al-
location strategy ν such that three groups were assigned φ and
the remaining two were assigned ψ . Then, in the second stage,
suppose 30% of individuals were randomly chosen to receive
vaccine within groups assigned φ and 50% of individuals were
randomly chosen to receive vaccine within groups assigned ψ .
Individuals were then followed for one year for detection of
cholera. Results from this hypothetical trial are given in Table 2.

Estimates of the population average direct, indirect, total, and
overall effects are given in Table 3. The estimated variances are
also presented. Note the direct effect estimate is nearly three
times greater under φ (30% coverage) compared to ψ (50%
coverage). Ali et al. (2005) noted a similar phenomenon and
cautioned that high levels of vaccine coverage can bias esti-
mates of vaccine efficacy (i.e., the direct effect of vaccination).

Table 3. Estimates of population average direct, indirect, total, and
overall effects per 1,000 individuals per year for data in Table 2

Estimated
Effect Parameter Estimate variance

Direct CED(ψ) 1.30 .856
Direct CED(φ) 3.64 .178
Indirect CEI (φ,ψ) 2.81 3.079
Total CET (φ,ψ) 4.11 .672
Overall CEO(φ,ψ) 2.37 1.430

In fact, the issue here is not one of bias, but rather that the para-
meter being estimated can depend on the level of coverage due
to interference between individuals. Moreover, the totality of
effects of a vaccination strategy must be viewed by considering
indirect, total, and overall effects in addition to direct effects.
Estimates of these other effects can easily be interpreted by in-
vestigators. For example, the indirect effect estimate in Table 3
suggests 50% vaccine coverage results in 2.8 fewer cholera
cases per 1,000 unvaccinated individuals per year compared to
only 30% vaccine coverage. Note the estimated total effect of
being vaccinated under ψ is over three times the corresponding
estimated direct effect, demonstrating the importance of ran-
domizing groups to different levels of vaccine coverage. Had
all groups received 50% coverage such that only the direct ef-
fect could be estimated, the utility of vaccination would have
been substantially underestimated. The estimated overall effect
provides a simple summary comparison of the two strategies,
indicating that, on average, 50% vaccine coverage results in 2.4
fewer cases of cholera per 1,000 individuals per year compared
to 30% vaccine coverage.

6. DISCUSSION

In this article, estimands for direct, indirect, total, and overall
causal effects of different treatment strategies are proposed in
the setting where interference between individuals is possible.
Relations between the estimands are established, and estima-
tors of the proposed estimands are presented. These estimators
are shown to be unbiased assuming a two-stage randomization
procedure with a mixed assignment mechanism at each stage
(Assumption 1). Under an additional assumption of stratified
interference (Assumption 2), variance estimators of the causal
effect estimators are derived that are unbiased under additivity
and positively biased otherwise.

This article builds on previous work in several significant
ways. First, causal inference in the presence of interference is

Table 2. Illustrative example of a two-stage randomized placebo-controlled vaccine trial based on data from Ali et al. (2005)

Group
assignment

Si

Vaccine recipients (Zij = 1) Placebo recipients (Zij = 0)

Group Total Cases Total Cases
i

∑
j Zij

∑
j Zij Yij (Zi )

∑
j (1 − Zij )

∑
j (1 − Zij )Yij (Zi )

1 1 12,541 16 12,541 18
2 1 11,513 26 11,513 54
3 0 10,772 17 25,134 119
4 0 8,883 22 20,727 122
5 0 5,627 15 13,130 92

NOTE: Group assignment Si = 1 (0) corresponds to 50% (30%) vaccine coverage.
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considered in a general framework not specific to any one sub-
ject area, unifying previous work on housing mobility studies
(Sobel 2006) and infectious diseases (Halloran and Struchiner
1991, 1995). The definitions of individual direct, indirect, to-
tal, and overall causal effects in the presence of interference
(Halloran and Struchiner 1991, 1995) are formally extended to
groups and populations of groups by averaging over all pos-
sible treatment assignments for particular allocation strategies
(Sobel 2006). By considering a population of groups, rather
than just one group as in Sobel (2006), unbiased estimators
of the causal estimands of interest are derived without requir-
ing exclusion restriction assumptions. The variance of causal
effect estimators in the presence of interference is also consid-
ered, which had not been done previously. The utility of the
proposed variance estimators will depend on whether Assump-
tions 1 and 2 are reasonable. Assumption 1 is determined by
the experimental design and, thus, should be under control of
the investigator. Assumption 2 may be reasonable in many set-
tings, such as in the evaluation of the effects of vaccines, edu-
cational interventions, or housing vouchers. However, in other
contexts, such as in cross-over trials or plant variety studies,
assuming different forms of interference may be more appro-
priate.

The methods developed here could be extended to settings
with more than two treatment levels or noncompliance as in
Sobel (2006). Consideration of population subgroups may be of
interest in the presence of interference. As in Halloran, Longini,
Cowart, and Nizam (2002), one could define the indirect, total,
and overall effects for different subgroups of the population.
For example, a strategy of vaccinating 70% of children against
influenza and another strategy of not vaccinating children could
be compared by the indirect effects on the incidence of in-
fluenza in adults from the same population. Similarly, Moulton
et al. (2001) and Sobel (2006) considered populations consist-
ing of participants and nonparticipants; that is, a subset of the
population does not receive either treatment.

In addition to these extensions, other areas of research remain
to be explored in the setting where interference between indi-
viduals is present. Different randomization strategies and inter-
ference structures might be considered. An anonymous referee
suggested more efficient variance estimators might be derived
if one is willing to make certain additional additivity assump-
tions. For example, under (9), σ̂ 2

i1(ψ) and σ̂ 2
i0(ψ) are estimat-

ing the same parameter, and, thus, more efficient variance esti-
mators might be obtained by combining data from individuals
assigned Zij = 0 and individuals assigned Zij = 1. Stochastic
causal models could also be considered, wherein the potential
outcomes Yij (zi ) are treated as random rather than fixed (e.g.,
as in Robins and Greenland 1989). Methods are needed to con-
struct confidence intervals for the different causal effects, per-
haps by building on the work of Rosenbaum (2007).

Rubin (2005) recently noted that causal inference can be con-
ducted by making only two assumptions: a probabilistic model
about the treatment assignment mechanism and SUTVA. By
providing a framework where the latter assumption is not com-
pletely necessary, our work here will hopefully contribute to a
foundation for causal inference in the presence of interference
upon which others can build.

APPENDIX: PROOFS OF THEOREMS 1–9

A.1 Proof of Theorem 1

Without loss of generality, let z = 1. Under Assumption 1, Ki is
fixed, so that

E{Ŷi (1;ψ)|Si = 1} = 1

Ki

ni∑

j=1

∑

z∈R
ni
Ki

Prψ(Zi = z)Yij (z)I [zij = 1].

Now any z such that zij = 0 does not contribute to the summation, so
that we can equivalently write

E{Ŷi (1;ψ)|Si = 1} = 1

Ki

ni∑

j=1

∑

ω∈R
ni−1
Ki−1

Prψ
(
Zi(j) = ω,Zij = 1

)

× Yij

(
zi(j) = ω, zij = 1

)

= 1

Ki

ni∑

j=1

∑

ω∈R
ni−1
Ki−1

Prψ
(
Zi(j) = ω|Zij = 1

)

× Prψ(Zij = 1)Yij

(
zi(j) = ω, zij = 1

)
.

Under Assumption 1, Prψ(Zij = 1) = Ki/ni , implying

E{Ŷi (1;ψ)|Si = 1} = 1

ni

ni∑

j=1

∑

ω∈R
ni−1
Ki−1

Prψ
(
Zi(j) = ω|Zij = 1

)

× Yij

(
zi(j) = ω, zij = 1

)

= Y i(1;ψ).

A.2 Proof of Theorem 2

Without loss of generality, let z = 1. Using the fact that E{Ŷ (1;
ψ)} = E[E{Ŷ (1;ψ)|S}], from Theorem 1 it follows that E{Ŷ (1;
ψ)} = E{∑N

i=1 Y i(1;ψ)Si/C} = Y (1;ψ).

A.3 Proof of Theorem 3

The conditional expectation result follows from

E{Ŷi (ψ)|Si = 1} =
ni∑

j=1

∑

z∈Rni

Yij (z)Prψ(Zi = z)/ni

=
ni∑

j=1

Y ij (ψ)/ni

= Y i(ψ).

The remainder of the proof parallels that of Theorem 2.

A.4 Proof of Theorem 4

The proof follows directly from known properties of estimators
of population means using simple random sampling (SRS) and two-
stage cluster sampling (see, e.g., Kish 1965, chap. 2; Splawa-Neyman
1990; Thompson 1992, chaps. 2 and 3). For example, given Si = 1
and Assumptions 1 and 2, Ŷi (1;ψ) can be viewed as the sample
mean from a simple random sample drawn without replacement from
{Yi1(1;ψ), . . . , Yini

(1;ψ)}. Thus,

Var(Ŷi (1;ψ)|Si = 1) =
(

1 − Ki

ni

)
σ 2
i1(ψ)

Ki
, (A.1)

where σ 2
i1(ψ) ≡ ∑ni

j=1{Yij (1;ψ)−Y i(1;ψ)}2/(ni −1) is the within-

group variance. It is also well known that E(σ̂ 2
i1(ψ)|Si = 1) = σ 2

i1(ψ),
implying (7) holds.
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Similarly, that E{V̂ar(Ŷ (z;ψ))} = Var(Ŷ (z;ψ)) for z = 0,1 fol-
lows from known results on two-stage cluster sampling. A sketch of
a proof of this follows. First, one can show

Var{Ŷ (1;ψ)}

=
(

1 − C

N

)σ 2
g1(ψ)

C
+ 1

CN

N∑

i=1

(

1 − Ki

ni

)
σ 2
i1(ψ)

Ki
, (A.2)

where σ 2
g1(ψ) ≡ ∑N

i=1{Y i(1;ψ) − Y (1;ψ)}2/(N − 1). Next, note
E(Si) = C/N such that

E
{
V̂ar(Ŷ (1;ψ))

}

=
(

1 − C

N

)E{σ̂ 2
g1(ψ)}
C

+ 1

N2

N∑

i=1

(

1 − Ki

ni

)
σ 2
i1(ψ)

Ki
. (A.3)

So the remaining task at hand becomes finding E{σ̂ 2
g1(ψ)}, which can

be shown to equal

1

N

N∑

i=1

(

1 − Ki

ni

)
σ 2
i1(ψ)

Ki
+ σ 2

g1(ψ).

Substituting this into (A.3) implies E{V̂ar(Ŷ (1;ψ))} equals

(

1 − C

N

)σ 2
g1(ψ)

C
+

{(

1 − C

N

)
1

C

1

N
+ 1

N2

} N∑

i=1

(

1 − Ki

ni

)
σ 2
i1(ψ)

Ki
,

which simplifies to (A.2).

A.5 Proof of Theorem 5

The proof follows from Splawa-Neyman (1990) and Rubin (1990);
a sketch is given here. First, we derive Var(ĈED

i
(ψ)|Si = 1), which,

of course, equals Var{Ŷi (0;ψ)|Si = 1} + Var{Ŷi (1;ψ)|Si = 1} −
2 Cov{Ŷi (0;ψ), Ŷi (1;ψ)|Si = 1}. We know the form of Var{Ŷi (z;
ψ)|Si = 1} for z = 0,1 from the proof of Theorem 4. Additionally, one
can show Cov(Ŷi (0;ψ), Ŷi (1;ψ)|Si = 1) = {σ 2

i(0−1)
(ψ) − σ 2

i0(ψ) −
σ 2
i1(ψ)}/(2ni). Therefore,

Var(ĈED
i (ψ)|Si = 1) = Ki

ni

σ 2
i0(ψ)

ni − Ki
+

(

1 − Ki

ni

)
σ 2
i1(ψ)

Ki

− 1

n i

{
σ 2
i(0−1)(ψ) − σ 2

i0(ψ) − σ 2
i1(ψ)

}
,

which simplifies to

Var(ĈED
i (ψ)|Si = 1) = σ 2

i0(ψ)

ni − Ki
+ σ 2

i1(ψ)

Ki
−

σ 2
i(0−1)

(ψ)

ni
.

The proof is then completed by noting that

E
{
V̂ar(ĈED

i (ψ)|Si = 1)|Si = 1
} = σ 2

i0(ψ)

ni − Ki
+ σ 2

i1(ψ)

Ki
.

A.6 Proof of Theorem 6

The proof follows along similar lines as the derivation of
E{V̂ar(Ŷ (1;ψ))} in the proof of Theorem 4. In particular, one can
first show

Var(ĈED(ψ))

=
(

1 − C

N

)
σ 2
D

(ψ)

C
+ 1

CN

N∑

i=1

Var(ĈED
i (ψ)|Si = 1), (A.4)

where σ 2
D

(ψ) ≡ ∑N
i=1{CED

i
(ψ) − CED(ψ)}2/(N − 1). Next, simi-

lar to E{̂σ 2
g1(ψ)} in Theorem 4, one can show E{σ̂ 2

D
(ψ)} =

∑N
i=1 Var(ĈED

i
(ψ)|Si = 1)/N + σ 2

D
(ψ). Taking the expected value

of (10), we have

E
[
V̂ar{ĈED(ψ)}]

=
(

1 − C

N

)
σ 2
D

(ψ)

C
+

(

1 − C

N

)
1

C

1

N

N∑

i=1

Var(ĈED
i (ψ)2|Si = 1)

+ 1

CN

N∑

i=1

E
{
V̂ar(ĈED

i (ψ)|Si = 1)Si

}
.

Combining this result with Theorem 5 proves the theorem.

A.7 Proof of Theorem 7

The proof follows along the same lines as the proof of Theorem 5.
Namely, one can show Cov(Ŷ (0;φ), Ŷ (0;ψ)) = {σ 2

g(0−0)
(φ,ψ) −

σ 2
g0(φ) − σ 2

g0(ψ)}/(2N), where σ 2
g0(φ) and σ 2

g0(ψ) are defined anal-

ogously to σ 2
g1(ψ) in Theorem 4, implying Var(ĈEI (φ,ψ)) equals

Var(Ŷ (0;φ)) + Var(Ŷ (0;ψ))

+ 1

N

{
σ 2
g0(φ) + σ 2

g0(ψ) − σ 2
g(0−0)(φ,ψ)

}
. (A.5)

From the proof of Theorem 4, we have

E

{ σ̂ 2
g0(ψ)

C

}

=
σ 2
g0(ψ)

C
+ 1

CN

N∑

i=1

Var(Ŷi (0;ψ)|Si = 1)

= Var{Ŷ (0;ψ)} +
σ 2
g0(ψ)

N
,

and similarly E{σ̂ 2
g0(φ)/(N −C)} = Var{Ŷ (0;φ)}+σ 2

g0(φ)/N , which
together with (A.5) prove the theorem.

A.8 Proof of Theorem 8

The proof is analogous to the proof of Theorem 7.

A.9 Proof of Theorem 9

As in the proof of Theorem 4, one can show

Var(Ŷ (ψ)) =
(

1 − C

N

)
σ 2
M

(ψ)

C
+ 1

CN

N∑

i=1

Var{Ŷi (ψ)|Si = 1},

where σ 2
M

(ψ) ≡ ∑N
i=1{Y i(ψ) − Y (ψ)}2/(N − 1). Following the

same lines as the proofs of Theorems 5 and 7, one can also show
Cov{Ŷ (φ), Ŷ (ψ)} = {σ 2

M
(φ,ψ) − σ 2

M
(φ) − σ 2

M
(ψ)}/(2N), where

σ 2
M

(φ) is defined analogously to σ 2
M

(ψ), implying

Var{CE0(φ,ψ)} = Var{Ŷ (φ)} + Var{Ŷ (ψ)}

+ 1

N
{σ 2

M(φ) + σ 2
M(ψ) − σ 2

M(φ,ψ)}.

Additionally, one can show E{σ̂ 2
M

(ψ)} = σ 2
M

(ψ) + ∑N
i=1 Var{Ŷi (ψ)|

Si = 1}/N , which implies E{σ̂ 2
M

(ψ)/C} = Var{Ŷ (ψ)} + σ 2
M

(ψ)/N .

Using an analogous result for σ̂ 2
M

(φ), the theorem follows.

[Received January 2007. Revised January 2008.]
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